Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(2,2'-Bipyridine)bis(tri-tert-butoxy-silanethiolato- κ S)lead(II) and (4,7-diphenyl-1,10-phenanthroline$\kappa^{2} N, N^{\prime}$)bis(tri-tert-butoxysilanethiol-ato- κS)lead(II) benzene hemisolvate

Jaroslaw Chojnacki,* Magdalena Kloskowska, Urszula Wójtowicz and Wieslaw Wojnowski

Chemical Department, Gdańsk University of Technology, 11/12 G. Narutowicz Street, 80952-PL Gdańsk, Poland
Correspondence e-mail: jarekch@chem.pg.gda.pl

Received 22 May 2007
Accepted 16 June 2007
Online 5 July 2007

In the title mononuclear lead silanethiolates, $\left[\mathrm{Pb}\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3^{-}}\right.\right.$ $\left.\mathrm{SSi})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, (I), and $\left[\mathrm{Pb}\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{SSi}\right)_{2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\right]$-$0.5 \mathrm{C}_{6} \mathrm{H}_{6}$, (II), the Pb atom shows a distorted square-pyramidal coordination with a $\mathrm{PbON}_{2} \mathrm{~S}_{2}$ core in which one S atom lies in an axial position. Intermolecular $\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions stabilize the structures. The benzene solvent molecule in (II) lies on an inversion centre.

Comment

The present study is a continuation of our investigation of silanethiolate complexes of various metals (see, for example, Kloskowska et al., 2006). The compounds often show interesting structural features and are potential precursors for the generation of structurized metal sulfides (Tran et al., 2000). Only three structures containing an $\mathrm{Si}-\mathrm{S}-\mathrm{Pb}$ sequence were

(I)

(II)
found in the Cambrigde Structural Database (CSD; Version 5.28, May 2007 update; Allen, 2002). The dimeric lead tri-tertbutoxysilanethiolate, in the form of the diglyme solvate, was obtained by reaction of silanethiol with PbO (Wojnowski et al., 1986). Another complex, $\mathrm{Pb}\left\{\mathrm{SSi}\left(\mathrm{OC}_{4} \mathrm{H}_{9}\right)_{3}\right\}_{2} \mathrm{~N}_{2} \mathrm{C}_{12} \mathrm{H}_{8}$, or (ortho-phenanthroline)bis(tri-tert-butoxysilanethiolato)lead(II), a mononuclear and heteroleptic compound, was obtained
about ten years later by the incorporation of a chelating nitrogen ligand (Peters et al., 1997). Finally, a metal-organic compound, namely a plumbolane (2,2,3,3-tetramethyl-5,5-diphenyl-1,4,2,3,5-dithiadisilaplumbolane), has been reported (Herzog \& Rheinwald, 2002). Several attempts to obtain and characterize heteroleptic silanethiolates with PPh_{3} or simple heteroaromatic nitrogen bases as additional ligands have so far failed. We present here the syntheses and structures of two mononuclear complexes, namely ($2,2^{\prime}$-bipyridine)bis(tri-tertbutoxysilanethiolato)lead(II), (I), and (4,7-diphenyl-1,10-phenanthroline)bis(tri-tert-butoxysilanethiolato)lead(II) benzene hemisolvate, (II). To our knowledge, no lead complexes with this latter heterocyclic ligand have been structurally characterized by X-ray diffraction to date.

Both compounds show a distorted square-pyramidal coordination of the Pb atoms. The impact of the 'inert pair effect' on the structure is clearly manifested. The base plane contains $\mathrm{N}, \mathrm{N}, \mathrm{S}$ and O atoms, whereas the second S atom, found in the apical position, belongs to the O, S-chelating tri-tert-butoxysilanethiolate ligand. A widening of the valence angles at the S atoms by ca 4° in the silanethiolate ligands not involved in chelation is observed in both structures (Tables 1 and 2). It is worth noting the influence of the steric effect of the S-atom lone pairs on the coordination of sulfur. In (I), the $\mathrm{Pb}-\mathrm{N}$ bond lengths differ, although the difference is small. This is not the case in (II), where $\mathrm{Pb}-\mathrm{N} 2$ is about $0.2 \AA$ longer than $\mathrm{Pb}-\mathrm{N} 1$. The $\mathrm{Si}-\mathrm{S}$ bond lengths are shorter and $\mathrm{Pb}-\mathrm{S}$ distinctly longer compared with the respective bonds in the plumbolane ($\mathrm{Si}-\mathrm{S}$ ca $2.14 \AA$ and $\mathrm{Pb}-\mathrm{S}$ ca $2.50 \AA$). This probably indicates a partially ionic character of the metalligand bonds in (I) and (II) (Baranowska et al., 2006). The $\mathrm{Si} 2-\mathrm{O} 4$ bond length is slightly longer than the other $\mathrm{Si}-\mathrm{O}$ bonds in (I), due to chelation; this effect was noted previously by Jesionka et al. (2005). In (II), the situation is complicated by disorder.

In structure (I), the aromatic $2,2^{\prime}$-bipyridine rings of two neighbouring molecules are linked by a $\pi-\pi$ interaction. Even

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 25% probability level. H atoms have been omitted.
if such an arrangement of heterocyclic rings is not possible in complex (II), due to the nonplanar character of 4,7-diphenyl-1,10-phenanthroline, it is possible between the phenyl substituents of the heteroaromatic base. In addition to this, some $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions complete the packing interaction scheme (Table 3).

The large dihedral angles between the phenanthroline residue and its phenyl substituents C37-C42 and C43-C48 [49.5 (2) and 51.1 (2) ${ }^{\circ}$, respectively] indicate that π electrons in the phenanthroline group are not coupled with the phenyl substituents. The same behaviour (shown in Fig. 3, with data extracted from the CSD) has been observed in all 43 complexes of the 4,7-diphenyl-1,10-phenanthroline ligand known to date (for example, Brandi-Blanco et al., 2005).

The benzene solvent molecule in (II) sits on the inversion centre at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, filling voids within the structure. Its linkage to

Figure 2
The molecular structure of (II), showing the atom-numbering scheme and displacement ellipsoids drawn at the 25% probability level. H atoms and the solvent benzene molecule have been omitted. Only the major part of the disordered group is shown.

Figure 3
Histogram of phenyl-heterocycle dihedral angles in 4,7-diphenyl-1,10phenanthroline complexes currently (May 2007) deposited in the CSD.
the main frame is by way of a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (final entry in Table 3).

Experimental

All manipulations were carried out under an atmosphere of nitrogen using standard Schlenk techniques. The solvents were purified and dried by standard methods (Perrin \& Armarego, 1988).

Compound (I) was prepared by the addition of $\left[\left\{\left({ }^{(} \mathrm{BuO}\right)_{3} \mathrm{SiS}\right\}_{2} \mathrm{~Pb}\right]_{2}$ $(0.3 \mathrm{~g}, 0.20 \mathrm{mmol})$ (Wojnowski et al., 1986) dissolved in hexanepentane ($40: 60 \mathrm{v} / \mathrm{v}, 25 \mathrm{ml}$) to a solution of 2,2'-bipyridine (130 mg , 0.83 mmol) in hexane-pentane ($40: 60 \mathrm{v} / \mathrm{v}, 5 \mathrm{ml}$). The mixture was shaken for a few minutes and subsequently left at ca 273 K for 15 h . The solid material was filtered off and the solution concentrated to half its initial volume and then left for crystallization at ca 273 K . After a week, good quality crystals of (I) (m.p. 433 K) were obtained in moderate yield (ca 50%, not optimized) with consistent elemental analyses for $\mathrm{C}, \mathrm{H}, \mathrm{S}$ and N .

Solid $\left[\left\{\left({ }^{t} \mathrm{BuO}\right)_{3} \mathrm{SiS}_{2} \mathrm{~Pb}\right]_{2}(0.3 \mathrm{~g}, 0.20 \mathrm{mmol})\right.$ (Wojnowski et al., 1986) and 4,7 -diphenyl-1,10-phenanthroline (bathophenanthroline) $(250 \mathrm{mg}, 0.40 \mathrm{mmol})$ were added to hexane (20 ml). The mixture was shaken for 10 min and subsequently left at ca 273 K for 5 h . The solid material was filtered off and the solution concentrated to form a raw product. Recrystallization from hexane-benzene ($1: 1 \mathrm{v} / \mathrm{v}$) solution was carried out at ca 273 K . After a month, crystals of (II) (m.p. 440 K) separated (yield ca 40%, not optimized). Elemental analyses for $\mathrm{C}, \mathrm{H}, \mathrm{S}$ and N were consistent with the assumed formula.

Compound (I)

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{SSi}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=922.35$
Triclinic, $P \overline{1}$
$a=9.4053$ (4) \AA
$b=13.8617$ (7) \AA
$c=18.0405(9) \AA$
$\alpha=107.361(5)^{\circ}$
$\beta=99.069(4)^{\circ}$

Data collection

Oxford Diffraction KM-4 CCD diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford
Diffraction, 2006)
$T_{\text {min }}=0.503, T_{\text {max }}=0.695$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.099$
$S=1.16$
10174 reflections

$$
\begin{aligned}
& \gamma=101.086(4)^{\circ} \\
& V=2144.1(2) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=4.13 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& 0.49 \times 0.13 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

17997 measured reflections 10174 independent reflections 9037 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

442 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=2.11 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-1.55 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

Pb1-N1	$2.610(4)$	$\mathrm{Si} 1-\mathrm{O} 3$	$1.625(3)$
$\mathrm{Pb} 1-\mathrm{S} 2$	$2.6705(11)$	$\mathrm{Si} 1-\mathrm{O} 2$	$1.627(3)$
$\mathrm{Pb} 1-\mathrm{S} 1$	$2.7034(13)$	$\mathrm{Si} 1-\mathrm{O} 1$	$1.633(3)$
$\mathrm{Pb} 1-\mathrm{N} 2$	$2.725(4)$	$\mathrm{Si} 2-\mathrm{O} 5$	$1.628(3)$
$\mathrm{S} 1-\mathrm{Si} 1$	$2.0730(17)$	$\mathrm{Si} 2-\mathrm{O} 6$	$1.632(3)$
$\mathrm{S} 2-\mathrm{Si} 2$	$2.0861(16)$	$\mathrm{Si} 2-\mathrm{O} 4$	$1.641(3)$
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{S} 2$	$95.78(10)$	$\mathrm{S} 2-\mathrm{Pb} 1-\mathrm{N} 2$	$85.70(9)$
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{S} 1$	$86.96(11)$	$\mathrm{S} 1-\mathrm{Pb} 1-\mathrm{N} 2$	$145.90(9)$
$\mathrm{S} 2-\mathrm{Pb} 1-\mathrm{S} 1$	$87.14(4)$	$\mathrm{Si} 1-\mathrm{S} 1-\mathrm{Pb} 1$	$97.90(5)$
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 2$	$60.74(14)$	$\mathrm{Si} 2-\mathrm{S} 2-\mathrm{Pb} 1$	$94.17(5)$

Compound (II)

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{SSi}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\right]\right.$--	$\beta=83.05(3)^{\circ}$
$0.5 \mathrm{C}_{6} \mathrm{H}_{6}$	$\gamma=85.29(3)^{\circ}$
$M_{r}=137.6$	
Triclinic, $P \overline{1}$	$V=2836.2(10) \AA^{3}$
$a=10.204(2) \AA$	$Z=2$
$b=13.359(3) \AA$	Mo $K \alpha$ radiation
$c=21.109(4) \AA$	$\mu=3.13 \mathrm{~mm}^{-1}$
$\alpha=84.57(3)^{\circ}$	$T=293(2) \mathrm{K}$

Data collection

Oxford Diffraction KM-4 singlepoint diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.198, T_{\text {max }}=0.359$
10564 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.118$
$S=1.00$
10091 reflections
648 parameters
$\beta=83.05(3)^{\circ}$
$\gamma=85.29(3)^{\circ}$
$Z=2$
Mo $K \alpha$ radiation
$T=293$ (2) K
$0.6 \times 0.41 \times 0.32 \mathrm{~mm}$

10091 independent reflections
7445 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
3 standard reflections
every 200 reflections
intensity decay: 5.7\%

Table 2
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

$\mathrm{Pb} 1-\mathrm{N} 1$	$2.594(5)$	$\mathrm{Pb} 1-\mathrm{N} 2$	$2.801(5)$
$\mathrm{Pb} 1-\mathrm{S} 2$	$2.6331(18)$	$\mathrm{S} 1-\mathrm{Si} 1$	$2.075(2)$
$\mathrm{Pb} 1-\mathrm{S} 1$	$2.6976(18)$	$\mathrm{S} 2-\mathrm{Si} 2$	$2.071(2)$
			$81.17(11)$
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{S} 2$	$87.77(11)$	$\mathrm{S} 2-\mathrm{Pb} 1-\mathrm{N} 2$	$148.25(10)$
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{S} 1$	$89.44(11)$	$\mathrm{S} 1-\mathrm{Pb} 1-\mathrm{N} 2$	$99.04(9)$
$\mathrm{S} 2-\mathrm{Pb} 1-\mathrm{S} 1$	$88.41(6)$	$\mathrm{Si} 1-\mathrm{S} 1-\mathrm{Pb} 1$	$94.28(8)$
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 2$	$60.42(14)$	$\mathrm{Si} 2-\mathrm{S} 2-\mathrm{Pb} 1$	

Table 3
$\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts for (I) and (II).
DA is the dihedral angle between planes, DCC is the length of the CC (centroid-to-centroid) vector in $\pi-\pi$ interactions, DCH is the length of the CH (centroid to H) vector in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and τ is the angle(s) subtended by the plane normal(s) to CC or $\mathrm{CH} . \mathrm{Cg} 1$ is the centroid of ring $\mathrm{N} 1 /$ C30-C34, Cg 2 of ring N2/C25-C $9, C g 3$ of ring C37-C42, Cg4 of ring C28-C31/ $\mathrm{C} 35-\mathrm{C} 36$ and Cg 5 of ring C49-C51/(C49-C51) iii.

Compound	Group 1/Group 2	DA $\left({ }^{\circ}\right)$	DCC/DCH (\AA)	$\tau\left({ }^{\circ}\right)$
(I)	$C g 1 / C g 2^{2}$	5.6	$3.797(4)$	24,31
(II)	$C g 3 / C g 3^{3 i}$	0.0	$3.717(5)$	17.1
(II)	C51-H51/Cg4		2.98	13.6
(II)	C48-H48/Cg5		2.81	6.6

Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $-x, 2-y, 1-z$; (iii) $1-x, 1-y, 1-z$.

All H atoms were refined as riding on their parent C atoms, with methyl $\mathrm{C}-\mathrm{H}=0.98 \AA$, methylene $\mathrm{C}-\mathrm{H}=0.99 \AA$ and aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic, $1.3 U_{\text {eq }}(\mathrm{C})$ for CH_{2} and $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups. In the case of (II), eluci-
dation of the structure from diffraction data required special treatment. The two butoxy groups at O4 and O6 were each refined as being disordered over two positions, with occupancies of 0.714 (12) and 0.286 (12). Atoms C5-C8 and C10-C12 were refined with ISOR/ SIMU instructions (SHELXL97; Sheldrick, 1997) simulating isotropic behaviour because of the unacceptable parameters of their ellipsoids. The highest electron-density peaks were located $0.78 \AA$ from atom Pb 1 in (I) and $0.86 \AA$ from Pb 1 in (II).

Data collection: CrysAlis CCD (Oxford Diffraction, 2006) for (I); KM4 System (Gałdecki, Kowalski, Kucharczyk \& Uszyński, 1996) for (II). Cell refinement: CrysAlis RED (Oxford Diffraction, 2006) for (I); KM4 System for (II). Data reduction: CrysAlis RED for (I); DATAPROC (Gałdecki, Kowalski \& Uszyński, 1996) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Version 1.5; Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was carried out with financial support from the Polish State Committee (grant No. 3 T09A 12028).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BG3039). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Baranowska, K., Chojnacki, J., Konitz, A., Becker, B. \& Wojnowski, W. (2006). Polyhedron, 25, 1555-1560.
Brandi-Blanco, M. P., Choquesillo-Lazarte, D., Gonzalez-Perez, J. M., Castineiras, A. \& Niclos-Gutierrez, J. (2005). Z. Anorg. Allg. Chem. 631, 2081-2085.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gałdecki, Z., Kowalski, A., Kucharczyk, D. \& Uszyński, I. (1996). KM4 System. Kuma Diffraction, Wrocław, Poland.
Gałdecki, Z., Kowalski, A. \& Uszyński, I. (1996). DATAPROC. Kuma Diffraction, Wrocław, Poland.
Herzog, U. \& Rheinwald, G. (2002). J. Organomet. Chem. 648, 220-225.
Jesionka, E., Ciborska, A., Chojnacki, J. \& Wojnowski, W. (2005). Acta Cryst. C61, m321-m323.
Kloskowska, M., Konitz, A., Wojnowski, W. \& Becker, B. (2006). Z. Anorg. Allg. Chem. 632, 2424-2428.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.NET. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Perrin, D. D. \& Armarego, W. L. F. (1988). Purification of Laboratory Chemicals. Oxford: Pergamon Press.
Peters, K., Peters, E. M., von Schnering, H. G., Wojnowski, W., Tamulewicz, S. \& Radacki, K. (1997). Z. Kristallogr. 212, 341-342.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tran, D. T. T., Taylor, N. J. \& Corrigan, J. F. (2000). Angew. Chem. Int. Ed. 39, 935-937.
Wojnowski, W., Wojnowski, M., Peters, K., Peters, E. M. \& von Schnering, H. G. (1986). Z. Anorg. Allg. Chem. 535, 56-62.

